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Simulating dose to circulating immune cells
How much does the integral dose matter?
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Radiation-induced lymphopenia

Lymphopenia: a lower-than-normal number of lymphocytes in the patient’s blood

Radiation therapy causes the depletion of circulating lymphocytes
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Sung, ... Paganetti: A Tumor-Immune Interaction Model for Hepatocellular Carcinoma based on measured Lymphocyte Counts in Patients undergoing Radiotherapy. Radiotherapy and Oncology 2020

Department of Radiation Oncology, Massachusetts General Hospital 3



Radiation-induced lymphopenia

Lymphopenia correlates with outcome
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No. at risk Time (months)
non-sRIL 121 80 38 18 4
sRIL 71 29 16 7 3

Patients treated with concurrent chemoradiation for locally advanced NSCLC
Severe radiation-induced lymphopenia (sRIL) = absolute lymphocyte count [ALC] < 0.23 x 10° cells/L

Jing et al. Severe Radiation-Induced Lymphopenia Attenuates the Benefit of Durvalumab After Concurrent Chemoradiotherapy for NSCLCJTO Clinical and Research Reports 2022
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Radiation-induced lymphopenia

Hypothesis: Radiation-induced lymphopenia is caused by cell kill of circulating lymphocytes
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We need to consider blood flow !
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Radiation-induced lymphopenia

The “low dose bath” impacts dose to lymphocytes

Difference in dose bath Difference in delivery time distribution
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Modeling dose to the blood
Stochastic compartment model of blood flow

- Simulate blood flow by blood particles moving between compartments

- Jump probabilities between compartments | and |:

Arterial
p(ci = ¢;) = pij = kijAt system
- Probability to stay in current compartment:

Dii = 1_zpij

L: Conditional probability that a particle leaves during time interval At, given it has not left until now

L:f(r)-At = h(r) - At = At
«— ~—

S(7) MTT
Hazard function (probabilistic rate at which particles leave )

Survival function

Beekman C ... Paganetti H: A stochastic model of blood flow to calculate blood dose during radiotherapy. Physics in Medicine and Biology
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Modeling dose to the blood
Blood flow as a Markov Process

‘Mean Transit Time’ (MTT) in every compartment:
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Beekman C ... Paganetti H: A stochastic model of blood flow to calculate blood dose during radiotherapy. Physics in Medicine and Biology
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Modeling dose to the blood
Blood flow model ("HEDOS") based on ICRP organs and hemodynamic data (gender, age...)
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Blood particles receive dose based on organ
DVHs and proportional to the time spent in
the irradiated organ

Jo = DV Hy/T, Ji = DVH\ /T,

‘ Iy ! | 1) :
R ————
|
I I I
o dt dt hy | dtdt
I(—N—N—N—)I | (—N—)I
! ! I steps in the irradiated organ
Blood particle ! ! 1
L} time
do = tofo + dtfo + dtfo + i fo
dy = dtfy + dtf,
) - o’

d = dy + d,

Model input: Delivery time structure and organ DVH
(https://github.com/mghro/hedos)

Shin ..., Paganetti, Grassberger: HEDOS - a computational tool to assess radiation dose to circulating blood cells during external beam radiotherapy based on whole-body blood flow simulations. Phys Med Biol 2021

Beekman C ... Paganetti H: A stochastic model of blood flow to calculate blood dose during radiotherapy. Physics in Medicine and Biology
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Modeling dose to the blood

Considering dose to un-contoured areas

B. Relative Volume (%) of Tissue per Body Region compared to entire Body

[ Tissue Brain Neck Chest  Abdomen  Pelvis  Lower Extremity
Blood in Large Arteries 0.03 9.46 27.72 2338 16.98 25.23
Blood in Large Veins 0.03 5.55 18.46 8.49 19.03 30.40
Muscle 201 11.52 2147 11.90 22.80 30.20
Whole-Body Adult/Female Skin and Muscle Large Vessels and Brain PGS BRC RGNy | S AR s i s
. Skin (100um) 577 9.14 19.89 12.61 13.76 3151
ICRP 145 Removed | Lungs | Liver Bone 10.68 1429 2499 13.99 21.64 31.49

Shin ..., Paganetti, Grassberger: HEDOS - a computational tool to assess radiation dose to circulating blood cells during external beam radiotherapy based on whole-body blood flow simulations. Phys Med Biol 2021

)
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Modeling dose to the blood

Other organs

Blood flow as a compartmental model

UF!

UNIVERSITY of

FLORIDA

Blood flow modeled explicitly
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Modeling dose to the blood

I \Venous

I Arterial Il Portal

UF [FLORIDA
Physical Principles:
* (Conservation of Blood Flow at each bifurcation

* Murray’s Law used to relate each parent vessel with its successors
* Gradient pressure computed at each step using Poiseuille’s law

Correa-Alfonso C; Withrow JD; Domal SJ; Xing S; Shin J; Grassberger C; Paganetti H and Bolch WE: A mesh-based model of liver vasculature: Implications for improved radiation dosimetry to liver parenchyma for radiopharmaceuticals. EJINMMI-Physics 2022 9; 28
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Modeling dose to the blood
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Xing, ... Grassberger, Paganetti: A dynamic blood flow model to compute absorbed dose to circulating blood and lymphocytes in liver external beam radiotherapy. Phys Med Biol 2022
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Modeling dose to the blood

o Deformable
ngld allgnment registration

- Simulate blood particles traversing
through dose field patient,
accumulating dose.

Beekman C ... Paganetti H: A stochastic model of blood flow to calculate blood dose during radiotherapy. Physics in Medicine and Biology

)
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Modeling dose to the blood

Phantom space Patient space

Parametrize every possible trajectory through the vasculature

and solve for s(t) (parameterization of a path) using ODE Computationally expensive

Patient space

Re-use the solution to the ODEs for each path

Distribution of paths for each blood particle — | Computationally cheap
Accumulate dose

Beekman C ... Paganetti H: A stochastic model of blood flow to calculate blood dose during radiotherapy. Physics in Medicine and Biology
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Modeling dose to the blood
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Beekman C ... Paganetti H: A stochastic model of blood flow to calculate blood dose during radiotherapy. Physics in Medicine and Biology
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Modeling dose to the blood

MTT = 4.835
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Paganetti H: A stochastic model of blood flow to calculate blood dose during radiotherapy. Physics in Medicine and Biology
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Modeling dose to the blood - Results

Brain and liver fields with similar volume but different blood volume and transition time

IEEENETEEEETEE Treatment dose Blood dose

Target volume (cc) 298.2 cc 353.8 cc m= e
Organ volume (cc) 1329.6 cc 1627.6 cc 80 | -
Blood with 6.0 % 9.2 %
Target/Organ ratio 0.22 0.22 0 dose > 0.0
Gy

Prescription dose 59.4 GyRBE 52.5 GyRBE 2 0] Mean dose 0.16 Gy 0.17 Gy

U (Gy)
Fractionation size 33 15 S e

““““ ‘ Max dose 1.3 Gy 0.65 Gy
Blood volume (%) 1% 10 % ol \ (Gy)
Transition time (s) 6.4s 24 s | | | Doseperimaction Gy | |
In 10 mins,

76% and 97% of BPs pass at least once through brain and liver
43% and 85% of BPs pass multiple times through brain and liver

Shin ..., Paganetti, Grassberger: HEDOS - a computational tool to assess radiation dose to circulating blood cells during external beam radiotherapy based on whole-body blood flow simulations. Phys Med Biol 2021
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Modeling dose to the blood - Results
Build-up of blood dose (6 patients)
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Xing, ... Grassberger, Paganetti: A dynamic blood flow model to compute absorbed dose to circulating blood and lymphocytes in liver external beam radiotherapy. Phys Med Biol 2022
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Modeling dose to the blood - Results

Actual delivery parameters
(6 patients)
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Xing, ... Grassberger, Paganetti: A dynamic blood flow model to compute absorbed dose to circulating blood and lymphocytes in liver external beam radiotherapy. Phys Med Biol 2022
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Modeling dose to the blood - Results
Tumor volume (increasing blood speed in the tumor)

CTV volume =603 ml CTV volume =249 ml
40 40
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Take-home messages

Lymphopenia correlates with outcome

Blood might have to be included as organ at risk in treatment planning decisions
Dose to the blood (i.e. circulating lymphocytes) can not be estimated by solely
considering integral dose

Good estimates can be achieved using HEDOS (open source)

For highly inhomogeneous dose distributions or organs, explicit vasculature models
deformed to patient anatomy are required

Is lymphopenia really caused by dose to the circulating lymphocytes?

The radiosensitivity of lymphocyte sub-populations in lymphatic organs as well as
the blood and tumor is unclear
The difference between blood transit times and lymphocyte transit needs to be

better understood

Department of Radiation Oncology, Massachusetts General Hospital 22



Modeling dose to lymphocytes
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radiosensitivity of lymphocytes is in the same order of magnitude as normal fibroblasts

B cells appear to be more radiosensitive than T cells, and NK cells appear to be the most
resistant.

Paganetti H: A review on lymphocyte radiosensitivity and its impact on radiotherapy. Frontiers in Oncology 2023
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Modeling dose to lymphocytes

A. Blood dose calculation

Liver Blood Flow Simulation
Xing et al., 2022

| Blood
| Particle '

C. Simulation of alternative
RT parameters for individual
patients

B. Estimating lymphocyte radiosensitivity
and recovery
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McCullum L;...; Bolch WE; Paganetti H and Grassberger C. Int J Radiat Oncol Biol Phys. 2023
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Modeling dose to lymphocytes

\ 0 ‘ e \ RT increases adherence of

lymphocytes to endothelial cells

‘iiﬂii’ sﬁh
/’ ‘\ <
Venous % Arterial Lymph nodes
—_ —_—
system system
@, "
Liver
u*’,
Other organs -

‘/——" Spleen
A. Blood flow model B. Lymphocyte recirculation model

Lymphocytes traverse capillary much slower than blood due to
1. Time required to deform to squeeze through
2. Process of adhesion to endothelial cells

2

YN

L

Weijerathne, H. et al. 2021. Radiother Oncol.

Tetheringand  Slow rolling Spreading
fast rolling and arrest and crawling

Transmigration

Guenther, C., 2022. Frontiers in Immunology.
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